*This is a HYBRID Event with in-person attendance in Levine 512 and virtual attendance via Zoom.
Artificial intelligence or deep learning technologies have gained prevalence in solving medical imaging tasks. In this talk, we first review the traits that characterize medical images, such as multi-modalities, heterogeneous and isolated data, sparse and noisy labels, imbalanced samples. We then point out the necessity of a paradigm shift from “small task, big data” to “big task, small data“. Finally, we illustrate the trends of AI technologies in medical imaging and present a multitude of algorithms that attempt to address various aspects of “big task, small data”: