Loading Events

« All Events

  • This event has passed.

Fall 2019 GRASP Seminar Series: Yuxiong Wang, CMU, “Learning to Learn More with Less”

October 18, 2019 @ 11:00 am - 12:00 pm

ABSTRACT

Understanding how humans and machines learn from few examples remains a fundamental challenge. Humans are remarkably able to grasp a new concept from just few examples, or learn a new skill from just few trials. By contrast, state-of-the-art machine learning techniques typically require thousands of training examples and often break down if the training sample set is too small.

In this talk, I will discuss our efforts towards endowing visual learning systems with few-shot learning ability. Our key insight is that the visual world is well structured and highly predictable not only in feature spaces but also in under-explored model and data spaces. Such structures and regularities enable the systems to learn how to learn new tasks rapidly by reusing previous experiences. I will focus on a few topics to demonstrate how to leverage this idea of learning to learn, or meta-learning, to address a broad range of few-shot learning tasks: meta-learning in model space and task-oriented generative modeling. I will also discuss some ongoing work towards building machines that are able to operate in highly dynamic and open environments, making intelligent and independent decisions based on insufficient information.

Presenter

- Learn More

Yuxiong Wang is a postdoctoral fellow in the Robotics Institute at Carnegie Mellon University. He received a Ph.D. in robotics in 2018 from Carnegie Mellon University. His research interests lie in the intersection of computer vision, machine learning, and robotics, with a particular focus on few-shot learning and meta-learning. He has spent time at Facebook AI Research (FAIR).

Details

Date:
October 18, 2019
Time:
11:00 am - 12:00 pm
Event Categories:
,